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ABSTRACT 

It is proved here that for Lebesgue-almost every line in the 

th ree-d imens iona l  Eucl idean space,  the  Poincar6 cont inued  fraction algo- 

r i t h m  fixes a vertex.  Besides,  the  a lgor i thm is nonergodie,  a l though  the  

Gauss  map,  defined by the  a lgor i thm,  has  an  a t t r ac to r  and  is ergodic. It is 

also shown t h a t  the  Eucl idean a lgor i thm and the  horocycle flow are orbit  

equivalent .  

1. I n t r o d u c t i o n  

The simultaneously rational approximation of points in 1~, for n >_ 2, the so- 

called multidimensional continued fraction expansions, is the current topic of 

study. With this in mind, it is worthwhile recalling some ideas of Poincar6. The 

approximation method proposed by Poincar6 deserves attention because it bears 

a simple geometrical interpretation. As will be seen, it can be extended to any 

other multidimensional continued fraction algorithm. 

Next, we recall the Poincar6 [Pol] geometrical interpretation of continued 

fractions. 

Consider a parallelogram (or a rectangle or a square) and tile the plane with 

it. Choose a basic parallelogram OABC; this is defined by the dihedron OAC 

(Figure la),  where O denotes the origin (Figure lb).  
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Figure la Figure lb 

Let a > 0 be the number to be approximated. Let g be the line y = a x .  We 

assume t? is in the interior of the basic parallelogram. This line gets out of the 

parallelogram through the side AB or BC. (Figure 2a). Assume this side is AB. 

Let D be the symmetric point of O with respect to the middle point of AB. The 

parallelogram OADB (Figure 2b) enjoys the same properties as the parallelogram 

OABC. In this way, a sequence of parallelograms enjoying these properties is ob- 

tained. The vertices which are common to at least two parallelograms correspond 

to the approximants of a. 

Figure 2a Figure 2b 

This procedure defines an algorithm, that to a is associated a sequence of plane 

tilings by parallograms or a chain of vertices from the simplex. It is convenient 

to introduce an analytical version of this algorithm. Let x l , x 2  be the affine 

coordinates of the point where the line t? intersects the segment AC (Figure 

2a) with respect to the basis OA, OC. Let OA~B~C t be the next parallelogram 
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and x 1' , x2, be the affine coordinates of the same point with respect to the new 

basis OA t, OC t. Analytically, this corresponds to the following algorithm F: if 

0 < xl  _~ x2 

(1.1) F ( x l , x 2 )  = F ( x 2 , x l )  = ( x l , x 2  - x l ) .  

This is the E u c l i d e a n  a l g o r i t h m  defined step by step. 

In 1884, Poincard [Po2] generalized his idea in order to approximate two hum 

bers a,/3 > 0. Let O, A, B, C be the vertices of a tetrahedron (Figure 3a) in th, 

space X3. 

Q Q: 

0 A 

Figure 3b 

Complete the tetrahedron OABC in order to obtain the parallelepiped 

OABCQ1Q2QaQ4 (Figure 3b) and tile the space with it. Here the point O 

means the origin. Consider the line 6, y = ax,  z = ~x and assume it intersects 

the interior of the parallelepiped. The parallelepiped is parti t ioned into six tetra- 

hedrons: OAQ1Q2, OAQ2Q3, OBQIQ2, OBQ2Q4, OCQ2Q3, OCQ2Q4. The six 

tetrahedrons defined by them have equal volumes. Consider that  tetrahedron 

which intersects the line g in its interior (Figure 4). 

This new tetrahedron OA'BtC t enjoys the same properties as the tetrahe- 

dron OABC. In this way, a sequence of tetrahedrons enjoying these properties is 

obtained. As before, this procedure defines an algorithm which associates to each 

pair of numbers a,  ~ a sequence of tetrahedrons or a chain of vertices from the 

simplex: 

A,B,C ~ A ' ,B ' ,  C t ~ . . .  ~ A(k), B(k),C (k) ~ . . .  

B 

Figure 3a 
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Q, Q 

O A 

Figure 4 

It will be proved that this algorithm, on the other hand, does not possess the 

same fundamental property enjoyed by the classical continued fraction algorithm 

on the plan as was expected by Poincar~. It will be seen here that an interesting 

phenomenon occurs: the two-dimensional continued fraction algorithm embedded 

in this three-dimensional algorithm prevails over it. The following assertion will 

be proved here: 

(1.2) "Once the tiling of the space is defined, for Lebesgue-almost every 

line e after finitely many interactions, the Poincar6 algorithm fixes one of 

the vertices of the chain of tetrahedrons, i.e., there exists ko = k(g) such 

that  

A ( k ) = A  (k°), for all k_>k0 " 

In the same paper [Po2], Poincar~ gave a nice and convenient analytical version 

of his algorithm. Let x 1, x2, x3 be the affine coordinates of the point where the line 

intersects the triangle ABC (Figure 4). With respect to this triangle assume 

that x 1 ___~ X 2 ___~ X 3.  Let ArB~C ~ be the next triangle. In this particular case, 

A ~ = A, B ~ = Q1, C~ = Q2. Therefore the affine coordinates of this point with 

respect to the triangle AtB~C ~ are 

X l  - -  X 2 ,  X 2  - -  X 3 ,  X 3 .  

Analytically, the Poincar~ algorithm denoted by P corresponds to the following 

map: 

(1.3)  P :  x = (Xl,  x3)  
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where R~_ is the positive cone in ]R 3 and a depends on x. Precisely, ~r is the 

permutation which arranges in increasing order the coordinates xl ,  x2, x3: 

Xa(1) ~ Xa(2) ~ Xa(3)" 

So, to each point x, P associates a sequence 

x, x (1), . . . ,  x (k), . . . .  

In this context, Poincar~ and Ch£telet claimed (see note in [Po2], p. 187) that if 

the coordinates of x were rationally independent, as k gets large, the coordinates 

of x (k) become very small. In other words, x (k) converges to 0, as k -~ +oc. It 

will be proved here that  a quite different phenomenon occurs in the limit: 

"For Lebesgue-almost every point x • ~_ ,  x (k) converges to 

the point (0, 0, r),  as k --~ +oo, where r > 0 depends on x." 

It is worth mentioning that,  independently of Poincar~, recently, number 

theorists have at tempted to prove the convergence of x (k) to 0, as k --+ +oo 

(Ruzsa [R]). 

Poincar~'s idea can be extended to higher dimensions. It is natural to call 

the Po inca r~  a lgo r i t hm,  P, the map defined in R~, for n >_ 3, by 

(1.4) P :  x = ( x l , . . . , x n ) ~ x ' = ( x o ( 1 ) , x o ( ~  ) - x ~ ( 1 ) , . . . , x ~ ( ~ ) - x o ( ~ _ ~ ) ) ,  

where a is the permutation which arranges in increasing order x l , . . . , x ~ .  To 

avoid misunderstanding, the two-dimensional case which reduces to the Euclidean 

algorithm was called F (1.1). 

Section 2 of this paper is dedicated to an interesting rediscovery of the 

algorithm. Without knowing Poincar~'s work, and having a completely different 

motivation, Daniels [D] and Parry [Pa] considered the same dynamics. Clearly, 

if one wishes to study the dynamical and metrical properties of an algorithm, 

it is necessary to normalize it. This should be done in such a manner that  the 

domain remains unchanged. The result of this operation is the so-called Gauss 

map induced by the algorithm. In [D], Daniels conjectured the ergodicity of the 

Gauss map T induced by P (1.4), 

Pu 
(1.5) T :  ~ • A n _  1 ~ ~ • A n _ l ,  

i rU l l  
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where An_l is the (n - 1)-dimensional simplex 

{ ( u l , . . . , u ~ )  C ~_:  ul + " "  + u ~  = 1} 

and IPull  = u~,(n). 

Geometrically, T maps the point where the line g intersects the triangle 

ABC into the point where g intersects the triangle A'B'C',  both points given in 

barycenter coordinates corresponding to the respective triangle. 

This paper is concerned with the dynamics of F, P and T. There were 

at tempts to prove Daniels' conjecture, in particular, by Parry [Pal and Schweiger 

[S]. 

Regarding the two-dimensional case, it will be shown in Section 8 that  the 

dynamics of F is equivalent to that of the horocycle flow. From the ergodicity of 

the former will follow the ergodicity of the latter. 

The three-dimensional dynamics have quite remarkable properties. In 

Section 7, it will be proved that  the algorithm P is not ergodic. Nevertheless, 

the map T is ergodic (Section 8); this follows from the ergodicity of the two- 

dimensional algorithm F even though T is nonconservative (Section 3), has an 

attractor (Section 7) and is the projection of a nonergodic map. 

Section 4 is devoted to certain continued fraction sums which naturally 

arise in this article. In Section 5, by completeness, it is shown that  Poincar~'s 

idea motivates a geometrical interpretation of multidimensional continued frac- 

tion algorithms: for example, Jacobi-Perron, Brun and Selmer algorithms (see 

Brentjes [B]) and also transformations in the space of interval exchange maps 

(see Veech IV]). They all bear the same basic idea of approximating a line in the 

n-dimensional Euclidean space by vertices of (n + 1)-hedrons whose vertices lie 

on a fixed lattice. 

The proof of existence of an absorbing set for the map T is left to Section 6. 

Section 9 regards the n-dimensional algorithm and some conjectures are made. 

The results proved in this paper lead one to conjecture the following 

dynamical behaviour for P (1.4) and T (1.5) on dimension n larger than 3: 

If n is even: P is ergodic and T is ergodic and conservative. 

If n is odd: P is nonergodic and T is ergodic, although nonconservative, 

and T has an attractor,  T k x  --* (0 , . . . ,  0, 1) as k --~ +c~, for a . e .x .  



Vol. 90, 1995 CONTINUED FRACTION ALGORITHM 379 

2. T h e  w o r k  of  K e n d a l l ,  Dan ie l s ,  P a r r y  a n d  S c h w e i g e r  

In [Ke], Kendall introduced an empirical probabilistic rank correlation method 

which is based only upon the measure of certain objects. He was interested in 

a situation in which one is able not only to rank the original objects in order of 

magnitude, but also the differences of these magnitudes. Basically, he would then 

associate, to each object, a finite chain of permutations. His process is defined in 

the following manner: each point x of the simplex A,~-I is taken to an element 

of S,~ x . . .  x $2. Here Sk denotes the permutat ion group in k letters: 

X ~ (0"0,  5" 1 . . . .  ~ O ' n - - 2 )  , 

where or0 arranges in increasing order (Xl, x2 . . . . .  xn) and crk+l arranges in in- 

creasing order 

x(k) _x(k)  x(k) _x(k)  ~ (~k+l )  _.(k+,) a k ( 2 )  a ~ ( 1 )  . . . .  ' a k ( n - - k )  ak (n- - (k - t -1 ) ) ]  = X , . . . , Z n _ ( k q _ l ) ) )  , 

for 0 _< k <_ n - 3. To each point (a0, or1,. . . ,  an-2)  corresponds a sub-simplex 

of A~_ 1. In each sub-simplex, Kendall fixes a point which is chosen by using an 

averaging method. 

He expected that  this point would give a good approximation for any other 

point of the sub-simplex. 

Anyway, one of the sub-simplexes has diameter (1 - 1)1/2 and therefore 

this poses a problem in the choice of a "good" approximating point. 

The work of Kendall has motivated Daniels [D] to introduce two processes 

by which a point in the simplex An_l can be expanded as a sequence of permuta-  

tions. Then, Daniels discussed their behaviour with the assumption of ergodicity. 

One of these maps is T (1.5), the renormalization of the so-called Poincar~ Al- 

gorithm. Daniels [D] proved that  T admits  a o--finite invariant measure which is 

absolutely continuous with respect to Lebesgue measure and found its density to 

be 
1 

xt(xl + x2). . .  (xl +- . .  + xn-1)" 

Concerning this map, Parry [P] proved that  T is ergodic for n = 2 and was 

unable to decide the case n > 2. In IS], Schweiger studies the case n = 3, and for 

this case proves that  T is nonconservative, that  is, T admits  a positive measure 

wandering set. Throughout  this paper  ,k(.), means the Lebesgue measure in A2. 

For n = 3, the following theorems will be proved: 
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THEOREM 2.1: For A-almost every x E A2, 

lim Tk(x) = (0,0, 1). 
k---*+z¢ 

In other words, the vertex (0,0,1) is an attractor for T. Theorem 2.1 is 

equivalent to assertion (1.1) about the Poinca% algorithm. 

With respect to the question of ergodicity, one has for the algorithm itself: 

THEOREM 2.2: P is nonergodic. 

Both theorems follow straight from Theorem 5.7, and their proofs are left 

to Section 7. For the so-called Gauss map T, the next result answers the question 

initially posed by Daniels [D]. 

THEOREM 2.3: T is ergodic (with respect to Lebesgue measure). 

The proof is left to Section 8. 

3. T h e  n o n c o n s e r v a t i v e n e s s  o f  T 

In order to have a clear picture of what really occurs in the dynamics of P and 

T, an alternative proof of the Schweiger theorem IS] will be given. 

Let 0 < xl, x2 < x3; if P (1.1) is applied to this triple, one obtains 

X = (Xl, X2,X3) 

x' = (min{xl, x2}, max{x1, x2} - rain {Xl, x2}, x3 - max{x1, x2}). 

Assume that Xl and x2 are rather smaller than x3. If one iterates P at this point 

k + 1 times, for k not large, one obtains 

(3.1) 

x ( k + l )  - -  - ( m i n  {x~ k) x~k)}, Sx (k) x (k) x~ k) , maxl.  1 ,  2 } - m i n { x ~  k), } ,  

i=O 

The sum which appears in the third coordinate does not depend on x3 for 

a suitable k. One sets 

(3.2) S(Xl'X2) = E max{x~k)' x~k)}" 
k<O 
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It will be proved that for almost every pair x l , x2  > 0, the sum (3.2) 

converges. For these pairs (xl ,x2),  if one chooses x3 _> S(Xl,X2), the point 

x = (x l ,x2 ,x3)  satisfies (3.1) for all k. It implies that  

x (k) ~ (0, 0, x3 - S ( x l ,  x2) ) ,  as  k --* + ~ .  

It is clear that 

(__q__,min{xl,x2} ) 
S(Xl,X2) converges if, and only if, S \ m a x { x l , x 2  } 1 

Set 

(3.3) 

As far as the sum S is concerned, it is the rate 

converges. 

rain {xl, x2} that matters. 
max {xl ,  x2} 

sum S(O) converges. Define 

(3 .4)  r={(Or, r,l-(O+l)r),(r, Or, l-(O+l)r):Oes-l(o,+~)}, 
0 < r < (0 + 1 + S(0)) -I. 

It follows from Lemma 4.1 that A(F) > 0. 

LEMMA 3.1: F---- N T-k{ xE A2:Xl,X2 <_x3}. 
k_>0 

Proof: Let x E F. Write x = (Xl,X2,1 - ( 0 +  1)r). We have that  

xl + x2 + 1 - (0 + 1)r = Or + r + 1 - (0 + 1)r = 1, 

therefore x E A2. 

One has that 

S(Xl, x2) = rS(O, 1) = rS(O) _< 1 - (8 + 1)r, 

by the choice of r. It implies that 

x e N T -k  {x e A2:Xl,X2 <_ x3}. 
k>0 

S(O) = S(O, 1), for 0 < O < 1. 

It will be proved in Lemma 4.1 that for Lebesgue-almost all 0 < 0 < 1, the 
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Let x E A2 and x (k) = T k x .  Assume that, for all k > 1, 

(k) (k) < x(k)3 371 ~ X 2 _ • 

T h e r e f o r e  x 3 - Ek>0 max {x~ k), x~ k) } converges. Thus x E P. 

Note that T - I ( F ) \ F  is a wandering set, since by definition 

T(r)  c T c T - l ( r ) .  
¢ ¢ 

Therefore T is nonconservative. 

Isr. J. Math .  

4. C o n t i n u e d  f rac t ion  sums  

For the elementary properties of continued fractions used here, see Khintchine 

[Kh]. 

Let 0 < 81 < 1 and consider its continued fraction expansion 

1 
(4.1a) 81 -- 

1 
a l +  - -  

a2  + " ' .  

The iterates of the Gauss map at the point 81 are, for k _> 1, 

1 
8k = 

1 
a k  + 

a k + l  + " ' .  

The sum S(81) is given by the following recursion formula: 

S(81) = 1 + (1 - 81) + " "  + (1 - (al - 1)81) + 81S(82) 
(4.2a) 

= a l ( 1  a1-181)+81S(82) 

which implies that 

(4.2b) S(8,) = E 808,...Sk_,a (1 - 18 ), 
2 k>_l 

where 80 = 1. Set 

(4.3) R(81) = E 8o81"'" 8k-lak. 
k > l  

It follows that  

(4.4) 1R(O1) <_ S(O1) < R(tgl). 

Next, it will be proved that  S is well defined almost everywhere. 



Vol. 90, 1995 C O N T I N U E D  FRACTION A L G O R I T H M  383 

LEMMA 4.1: The sum S(O) converges, [or almost every 0 < 0 < 1. 

Proo~ According to (4.4), it is necessary and sufficient to prove that  R converges 

almost everywhere. 

For 81 (4.1a), let qk = qk(01) be the denominators of its approximants. 

They are defined by 

(4.5) qk+l --- ak+lqk + qk-1, k > O, q-1 = O, qo = 1. 

By (4.1) and (4.5), one has 

1 1 

al + 02 ql + qo02" 

Claim that, for k _> 1, 

(4.6) 0 1 " ' 0 k =  
qkTqk--10k+1" 

By (4.1b), 0k+l  ---- 1/(ak+l  + 0k+2); one obtains that 

1 1 
0 1 . . . O k O k + l  = Ok+ 1 = I__L_+ qk-1 qk + qk-10k+l qk 0k+l 

1 1 

qk(ak+l + 0~+2) + qk-1 (ak+lqk + qk-1) + Ok+2qk 

according to (4.5), this proves the claim. 

The general term of the sum R(O1) (4.3) satisfies the following inequalities: 

by (4.6) 

(4.7) ak+----L< O0'''Okak+X < ak+l 
2qk qk 

since qk-lOk+l < qk-1 < qk. 

Let a = (x/5 - 1 ) /2  be the inverse of the golden ratio; its continued fraction 

expansion is 
1 

O~-- 
1 +  1 

1 + " .  

One concludes that,  for all k > 0, 

(4.8) qk(a) ~ qk(01). 
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Besides, by (4.1), (~k = c~ for all k. It implies by (4.7) and (4.8) that  

(4.9) 1 ak ~ - k  < qk(01). 
2qk(01-----~ < or 

The Borel-Bernstein Theorem (see [Kh], p. 62) assures that, if Ck > 0 and 

E(1/¢k) converges, then, for almost every 01, ak > Ck only finitely many times. 

Let e > 0; since E(~ Ck converges, for almost every 01, 

(4.10) ak+l < ~-~k, 

for k sufficiently large. From (4.7), (4.9) and (4.10), one obtains 

(4.11) Oo. . .  Okak+l < 2a  k • v~ -~k = 2c~ (1-~)k, 

for k sufficiently large. 

This proves Lemma 4.1. | 

The sum established in (4.2) can be generalized for higher dimension. Set 

So(91) = 1 and $1(01) = S(01) .  Now (4.2) reads 

( al'o 0 Sl(01) ~ al S0(01) ~ -~- 01Sl(02), 

Sl(01) - ~  E 0 0 " ' 0 k - l a k  So(Ok) ~ Ok • 
k > l  

Recall that  by (4.2), 

(4.12) $1(01) = 0 + 1 + (1 - 81) + . . . .  E C~ 1)' 
k_>o 

where C O) is the k-th term. Set 

S2(01) -- 0 + E $1(01) - 1) : E C~2)' 
k_>o k>o 

where Co(2) : 0 and Ck (2) ~- SI(0])  - E l = O k  C~I). 

By recursion, for m _> 1, define 

(4.13) Sin+,(8,) = 0 + E Sk(O,) - C} k) r : ( " + ' )  
k>0 i=0 k_>0 
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According to (4.2a) 

,5'2(81) -~-SI(O1) -{- (,5'1(81) -- 1) -}- • " • 

+ (S1(81) - -  (1 + (1 - 01) + . . .  + (1 - (al - 1)81)) + ' "  

< a l S 1 ( 8 1 )  --1-- 81S1(82) +' '"  

= a l S 1 ( 8 1 )  q- 8122(82) 

and by recursion, for m > 1, one obtains 

(4.14) 

Set 

(4.15) 

Srn+l(81) < alSm(81) + 81Sm(02). 

Ro(01) = 1, RI(01) = R(81) (4.3) 

R m + l ( 0 1 )  = E 0001" '"  Ok-lakRm(Ok); 
k>l  

therefore, according to ( 4 . 1 4 ) , f o r m >  0 

(4.16) S,~(01) <R,~(01). 

and 

385 

Rl(Ok) = ak + E Ok"'Oz-lat 
l>k+l 

1 
= ak + oO...Ok_l ~ 0o...0~-1al. 

l>_k+l 

almost everywhere. 

By (4.3), for k >_ 1, 

According to (4.10) and (4.11), for k > K -- K(01), 

Rl(0k) _< a -~k + 4a k - 1 E  O~(1--e)J 

j_>k 
ct2k--1 

< M a  -~k, 

COROLLARY 4.2: For almost every 0 < 01 < 1, all sums Sin(01) converge, for all 

m>_O. 

Proof: According to (4.16), it suffices to prove that for all m _> 1, R,~ converges 
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where M = M ( K ,  e) > O. 

By a suitable choice of e, c < ½, it implies that  R2 (4.15) converges almost 

everywhere according to (4.11). 

Using recursion, it follows that  Rm (4.15) converges almost everywhere, for 

any fixed m > 1. 

This concludes the proof of Corollary 4.2. | 

5. Par t i t i ons  

The aim of this section is to define the partit ions of the simplex A = A2 which 

are obtained as T is iterated. This enables one to deal with measurements in the 

simplex which are necessary in Section 6. 

The method used here wilt be extended to other multidimensional 

continued fraction algorithms. The geometric interpretation of these algorithms 

will enable one to introduce some tools which are useful for computat ion in the 

simplex. Therefore, one will be able to study metric and ergodic properties of 

these algorithms. 

Recall the Poincar~ Algorithm and consider the basic tetrahedron as OABC. 

Call A the triangle ABC. Here the coordinates of the vertices A, B, C are, 

respectively, (1,0,0), (0,1,0), (0,0,1) since they are the basic points of the lattice 

defined by the points O,A,B,C. Let c~, ~ > 0 be real numbers and g be the line: 

y = ax,  z = ~x. Let (xl,  x2, x3) be the barycenter coordinates of the point 

where g intersects the triangle A2. Let a be the permutat ion which arranges in 

increasing order xl ,  x2, x3: 

x~(1) _< xo(2) _< xo(3). 

Let OA~B'C ~ be the new tetrahedron defined by P (1.2). Let M = (m~j) be the 

3 × 3 matr ix  defined by 

0, a - l ( i )  < j ,  
miJ = 1, otherwise. 

If one writes the coordinates of the points in columns, one obtains 

Q' = MQ, for Q = A,B,C. 

There are six matrices Mo each one corresponding to a permutat ion a E $3, the 

group of permutat ions in three letters. Let 

Mu 
LM: uEA2~-*  ~ E A 2 .  
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The sub-simplex LM~ (A2)  intersects all lines g which intersect the interior 

of tetrahedron OA'B'C',  for each a c $3. Set 

Ao = LM.(A2). 

Therefore 

A =  U A o  
aESa 

is a disjoint union up to null measure sets. For simplicity, enumerate these six 

sub-simplexes A~ , . . . ,  A~. Notice that 

Call 

TA' ,  = a .  

P l = { A q : l < i  < 6 }  

the first partit ion of A. Each sub-simplex A' i is partitioned into six sub-simplexes, 

as the map P is iterated again. The second partition of A is given by 

P2 = {At n LM~(A'~): 1 < i < 6, a e S3}. 

For simplicity, write 

/'2 = {A'ii,~2:1 _< il, i2 _< 6}. 

Notice that P2 does not consist of 62 equal triangles. By recursion, if 

(5.1) Pk = ~A!k)  • 1 < im < 6, 1 < m < k} 
[ * Z l  , ' " ( t k  • - -  _ _ _ 

is the k-th partition, the (k + 1)-th is given by 

(k) } Pk+l = ~A!k) ' ALM~(Ail ..... ik ) : l  < i ra  <6, 1 < m <  k, rye $3 • 

In other words, let cri E $3, for 1 < i < k, and set 

M (k) = M ~  . . .  Mol. 

One has that  Pk is formed by the union of all LM(~) (A). 

It was noticed by Veech [V] that  if M is a strictly positive n × n matrix 

and ~1,/~2, ~3 are the sums of its three columns, the Jacobian of LM equals 

1 
(5.2) JM(U) = n!(Ulgl + . . .  + Untn) n' 
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where u belongs to /~n--1. 

In particular, the area of L M ( A n _ I )  is 

fo 1 fol-(~l+'"+u'~-2) dun_l JM(U) - n,~l . . . ~n (5.3) A(LM(A)) = dul" '"  1 

Poincar6's idea of a geometric algorithm can be extended to any multi- 

dimensional continued fraction algorithm defined in Brentjes ([B], p: 18) and 

also considered in Arnoux and Nogueira [AN]. 

In the space R n, let A1 , . . . ,  AN be the basic points of an n-dimensional lat- 

tice. With respect to this lattice, the coordinates of the vertices A1, . . . ,  An are, 

respectively, (1, 0 . . . .  , 0 ) , . . . ,  (0 , . . . ,  0, 1). Partition the (n+l)-hedron OA1. . .As  

into (n + 1)-hedrons whose vertices belong to the lattice: O,A~. . .  ,A'~. By re- 

cursion, at the (k + 1)-th stage the (n + 1)-hedron OA~k)...A (k) is partitioned 

into (n + 1)-hedrons whose vertices belong to the lattice and, moreover, one of 

them is the origin O. Sometimes this partition is infinite, as is the case of the 

Jacobi-Perron algorithm. 

Let a l  . . . . .  a ~ - i  > 0 be real numbers and assume that  the line ~: x2 = 

a l x l , . . . ,  Xn = a,~-lXl,  intersects the interior of the (n + 1)-hedron OA1.. .An. 

One defines the algorithm which associates to the line g the ordered sequence of 

(n + 1)-hedrons which contain ~ in their interiors: 

O A 1 . .  An OAt . . .  -+ k) 

Analytically, this algorithm is defined in the following manner. Let An-1 be 

the ( n -  1)-dimensional simplex A1.. .An.  Let x = (Xl,. •., xn) be the barycenter 

coordinates of the point where the line ~ intersects the simplex. The barycenter 

coordinates (x{k),...,x(~ u)) of the point x with respect to the (n - 1)-hedron 

A~ k) . . .A (k) are the k-th iterate of the algorithm at point x. 

Write all vertices in columns. There exists a matrix M with positive integer 

coefficients which gives 

AI k) = M A i ,  for l < i < n .  

It implies that  det M = +1. 

As before, one can define the sub-simplex associated to the matrix M: 

(5.4) LM(A~-I) .  

The partition Pk defined by the algorithm into A~- i  is the disjoint union of the 

sub-simplexes (5.4), when M runs over all suitable matrices. 
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6. A n  abso rb ing  set  for T 

The aim of this section is to prove that the set 

(6.1) F ~  = U T-kF  
k~0 

equals A2 almost surely. This means: 

THEOREM 6.1: F is an absorbing set. 

Let M be a strictly positive 3 × 3 matrix corresponding to one of the 

triangles defined in (5.1): 

(6.2) 

It follows from (5.2) that 

~(LM(A2) n U T-~r) = / JM. 
o<_~_<k r 

Let ~1, e2, ~3 be the sums of the columns of M. If one introduces a suitable change 

of variables (3.4), one obtains 

(6.3) 

• ~(LM(A2) O T-kr) 

1 /o /o = - ~ dO dr 1 
2 (ea(1)0 + ea(2) + e3(1 - 0r - r)) 3 

1 ~  1~o l  dO 

---- 2 ES: ~3 (~a(1)0 ~- ea(2) -~- e3S(0)) 2" 

According to (5.3) and (6.3), the following has been proved: 

LEMMA 6.1: Let x E AI k) (6.2). The probability p (M)  that x E F ~  (6.1) is 

greater than 

E ~a(1)ga(2) ~01 
dO 

aeS2 (~a(1)0 -{- ~a(2) ~- ~32(0)) 2" 

Here, the probability means the ratio 

(6.4) p(M) - ~(Z~Ik) n r ~ )  
~(~I k)) 
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From Lemma 4.1, it follows that there exists a constant K > 0 such that 

1 
(6.5) .~(S-I(o ,  K)) > 2" 

One concludes, from (6.4) and (6.5), that 

~ 1 dO 
p(M) E >_ go(1)£o(2) 

- -  /2 (ga(1) o + g°(2) + gaK) 2 
(6.6) °es ,  

1 ~ ga(1)g°(2) 

= 2 E 2 (g°(1) -1- £a(2) + K~3) 2" 

Recall that K does not depend on ~1, g2, g3. 

From (6.6), one concludes the following: 

LEMMA 6.2: Let M be a strictly positive matrixsuch that l < £a <_ g2 <_ gl <_ 292, 

then the probability (6.4) 
1 

p(M) > 2(K + 3)2 

The next result establishes the central property of the partitions Pk (5.1), 

k > 1. If F were not absorbant, 

A(rL) > o, 

where r~ = A2\F~. 

LEMMA 6.3: II'A(F~) > o, given e > o there exists a sub-simp]ex A' • Uk>_o Pk 

such that 

A(A' n r ~ )  < eA(A'). 

Proob Let e > 0 be fixed. By the Lebesgue Density Theorem (see Fernandez 

[Fe], pp. 163-164), there exists an open ball of positive radius B contained in A2 

such that 

A(B n r ~ )  < cA(B). 

Let x be a density point of B • r ~ .  

First it is claimed that there exists a sub-simplex A(x) which satisfies the 

following: 

(6.7a) A(x) E U Pk, 
kkO 

(6.7b) A(x) C B, 

(6.7c) x • A(x). 
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Since x is not in F ~ ,  x and its iterates have no isolated coordinate. 

all k > 1, let 

X E Ai  k = LM(k)(A2) ,  where 1 < ik _< 6. 

Let 

(6.8) f(k) = / f ~ k )  = tM(k) 
\ 23 

be the column sums of the matr ix  M (k). 

The partit ions Pk define the following map: 

(6.9) 

If x C F ~  infinitely often 

x ~ (~)~_>o e s ~ .  

~k(3) < 3. 

391 

For 

~(A' n r ~ )  < 2c~(A'). 

This proves the assertion. | 

In the three-dimensional case, the above condition implies that  the enclosed sub- 

simplexes Ak(x) E U Pm which contain x shrink to x as k --~ +0o. The matrices 

M (k) have no isolated column: to each column are added the two other ones 

infinitely often. This proves the claim. 

Let k(x) be the minimum of k > 0 such that  Pk contains a sub-simplex 

which satisfies (6.7). Note that  if Pk satisfies this condition, Pk+l also does. 

Set, for a fixed k, 

Vk = U {A' C Pk: A' satisfies (6.7) for some density point of B n F ~ }  ; 

thus 
Vk C Vk+l and 

C ~(vk) -* ~(B n r ~ ) ,  as k -~ +oo. 

This implies that  there exists k such that  

~(Vk) > 1A(B n r ~ ) ,  

therefore there exists a triangle A'  E P such that  
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Let x c A2 and {ak}k>0 be the sequence given by (6.9). Recall tha t  ak 

arranges in ascending order x (k) = Tkx.  

For simplicity, impose tha t  for a < b the permuta t ion  which arranges in 

increasing order: (a, a, a), (a, a, b) and (a, b, b) is (1). 

(b, b, a) is (123). 

(a, b, a) is (23). 
(b, a, b) is (12). 

(b, a, a) is (132). 

LEMMA 6.4: Let x C /k2 and Xl > 0, then there exists k >_ 0 such that 

ak(1) > i. 

Proof: Consider such an x. There  exists an integer m > 1 for which m x l  > 

min~x (m) x (m)t implies tha t  for some 0 < k < m, min{x2, x3}. Therefore Xl > t 2 ' 3 J 

> 1. | 

Let x E A2 with Xl > 0; set 

(6.10) k(x) = min{k >_ 0: ak(1) > 1}. 

According to Lemma  6.4, k(x) is finite. 

The  next  result will allow one to  apply Lemma 6.2. 

LEMMA 6.5: Let x E A2, with xl  > O; then there exists k for which ~(k) (6.8) 

satisfies the following: 

l (k) 
(6.11) 1 < ~(1) < 2, 

Proof'. For ease, assume 0 < xl  _< x2 _< x3. If I = l (k) satisfies the desired 

condit ion (6.11), one is done. If not,  but  max{/2,/3} > ll,  then l' satisfies (6.11). 

So one is left with the case where Ii > max{/2,13}. Here at  t ime k = k(x) (6.10), 

max {l~ k),/~k)} > l~k), and therefore/ (k+l)  satisfies condition (6.11). | 

Now Theorem 6.1 will be proved. 

For l E R~_ and x E A2, with x i  > 0, according to Lemma 6.5 

t(x) = min{k > 0: l (k) satisfies (6.11)} 
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is finite. It implies that, for any fixed initial l, 

A2 = U { x :  t(x) = t} almost surely, 
t>0 

where the right-hand side is a disjoint union. Therefore, given a 6 > 0, there 

exists a to = t(6) for which 

(6.12) 6{x: t(x) >_ to} < 6. 

Let A' be a sub-simplex which is given by Lemma 6.3 for 

1 
(6.13) e - 

4(K + 

where the constant K satisfies (6.5). 

Applied to A', Lemma 6.5 and (6.12) imply that there exists a to = t(6) 

such that 

(6.14) c A': > to} < 

Lemma 6.2 assures that 

1 
(6.15) A{x C A' N F: t(x) <_ to} _> 2(K + 3) 2-A{x • A': t(x) <_ to}. 

According to (6.14) and (6.15), one concludes that 

1 - 6  
(6.16) A(/,' n r ~ )  > 2 ( g  + 3) ~-~(A')" 

For 6 E (0, ½), (6.16) contradicts the choice of A' given by (6.13). 

Theorem 6.1 is proved. | 

7. E x i s t e n c e  o f  a n  a t t r a c t o r  for  T a n d  n o n e r g o d i c i t y  o f  P 

First Theorem 2.1 will be proved. Let x C F. For P (1.2), set 

pk  x = x (k) 

where x~k)= x 3 -  ~k_- 1 (x~ i) -F x~)) .  In this case, on the two first coordinates 

P behaves as the Euclidean algorithm (1.4) 
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and 

x(a k) x3 - S ( x l ,  x2), 

where S is defined in (3.2). 

(7.1) 

as k --~ +~x), 

By the definition of T, one obtains 

1 x(k+l) ~ (0, 0,1), as k ~ + e o .  Tk+l  x = x~k---y 

By Theorem 6.1, for almost every x • A2 there exists m = re (x )  >_ 0 such 

that  T m x  • F. This implies by (7.1) that  

T k x  ~ (O,O, 1), as k - - * + o c ,  

for almost every x • A2. 

This shows that  (0,0,1) is almost everywhere an at t ractor  point for T. 

This concludes the proof of Theorem 2.1. | 

Next Theorem 2.2 will be proved. 

In order to prove that  P is not ergodic, we will exhibit a nonconstant 

function which is invariant by P. Here F and F (3.4) correspond to the same sets 

as P replaces T. 

Let x • F; define 

(7.2) f ( x )  = x3 - S (X l ,  x2), 

where x = (xl ,x2,x3)  and S is given by (3.2). Note that  f is finite and well 

defined in all F. Let x • F ~  (6.1). Set 

m ( x )  = m i n { m  _> O a n d p m x • F }  

and 

(7.3) f ( x )  = f ( P m ( X ) ( x ) ) .  

According to Theorem 6.1, this defines a positive-valued function in almost all 

A2. 

Claim that  f o P = f .  

Let x • F; from (7.2), 

I I I I I 
(7.4) f ( P x )  = x 3 - S ( x  1, x2) = (x3 - (x, +x2)  ) - (S(xl ,  x2) - (xl -t-x;)) = f ( x ) .  
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Let x E F ~ \ F ;  by (7.3), 

f ( P x )  = f(Pm(P~:)(Px)), 

where m(Px)  = re(x) - 1, since x E r \r. Therefore, by (7.3), 

(7.5) f ( P x )  = f(Pm(X)x) = f (x) .  

The equalities (7.4) and (7.5) assert the nonergodicity of P and conclude the 

proof of Theorem 2.2. | 

8. T h e  Euc l i dean  a l g o r i t h m  a n d  the  e rgod ic i ty  of  T 

For the dynamical properties of unimodular flows used here, the reader is referred 

to Furstenberg [Fu] and Ghys [G]. 

Recall that F (1.1) is defined through two elementary matrices: 

(0 1 
(8.1) ( - 1  1 - 1 ) '  

Let s be an irrational number and 

Set 
a s + b  

t =  d; cs + 

then the continued fraction expansions of s and t have the same tail, that is, 

(8.2) s = [ao, a l , . . . ,  a,~, co, c l , . . . ]  and t = [bo, bl . . . . .  b,~, Co, c1,...] 

(see Hardy and Wright [HW], Theor. 175, p. 142). Moreover, the converse holds. 

Let x = (Xl, x2) C R~_ be a point with an irrational ratio xl /x2.  Assume 

Ax E 11(2+, for some A ~ GL(2, Z). According to (8.2), there exist positive integers 

k and l such that  Fk(x) and Fl(Ax)  are parallel. There are products B and C 

of elementary matrices (8.1) which allow one to write 

(8.3) Fk(x) = B x  and FI(Ax) = CAx.  
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Therefore x and B - 1 C A x  are parallel. If x is an eigenvector of the matrix 

B-1CA,  the ratio of x must be a quadratic surd. Otherwise B - 1 C A  is the 

identity, that is, 

Fk(x) = Fl (dx) .  

Assume the ratio of x is a quadratic surd. There exist positive integers k 

and 1 such that B x  and CAx  (see (8.3)) have a ratio with periodic continued 

fraction expansion. Let m be the smallest strict positive integer such that 

Bx  and F m ( B x ) = D B x  

are parallel. The direction of B x  is also invariant under C A B  -1. It follows that  

for some integer n 

C A B  -1 = D ~. 

This result, for instance, can be found in Hurwitz and Kritikos [HK] (Proposition 

1, p. 246). 

The following has been proved: 

PROPOSITION 8.1: Let x E R2+ be a point with an irrational ratio and Ax C R2+, 

for some A E GL(2, Z). Then, for some positive integers k and l, 

Fk(x) = Fl(Ax) .  

Proposition 8.1 assures that the action of the group GL(2, Z) restricted to 

the positive cone ~_ is orbit equivalent to F. In other words, let R1 and R2 be 

equivalence relations on ~_ given by 

x R l y ~ y = A x  for some A E G L ( 2 ,  Z), 
(8.4) 

xR2y ~ Fk(x)  = Ft(y) for some positive integers k and l. 

So, R1 and R2 are equal. 

The ergodicity of the so-called horocycle flow was established by Hedlund 

[HI: It means that  the left shift (1 tl) acts ergodicalty on SL(2, ~)/SL(2, Z). 

This can be rephrased in two manners: any nonvanishing subset of SL(2,1~) 

invariant to the left under the shift (~ tl) and to the right under the action of 

SL(2, Z) is a full measure set. Or, otherwise, since (~ tl)\SL(2,]~ ) is isomorphic 

to ~2 _ {0}, any nonvanishing subset of ~2\{0} invariant under the action of 

SL(2, Z) is a full measure set. The last implies that  the action of the group 
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GL(2, Z) on the plane ]R 2 is ergodic. Also, the equivalence relation R1 (8.4) on 

the positive cone R~_ is ergodic. 

One summarizes: 

COROLLARY 8.2: The Euclidean algorithm F is ergodic (with respect 

to Lebesgue measure). 

Next, a description of the dynamics of the three-dimensional algorithm P 

will be given. 

The same notation as in (3.4) and Lemma 3.1 is purposely used to define 

(8.5) F = N P - k { x  E R3 : Xl,X 2 ~__ X3}. 
k>0 

By Lemma 4.1, the map 

• : x = (xl ,x2,x3)  e r ~ (xl ,x2,  f(x)) e ]~  × ~_ 

is well defined up to a null measure set, where f is defined in (7.2). By definition, 

is injective. Let x C P and c _> 0; according to (7.2), one has that  

II/(Xl, X2, C -~- S(Xl, x2) ) : (Xl, x2, c). 

This proves that  • is onto and measure preserving. Thus, k~ is a measure 

preserving isomorphism. 

The dynamics of P on F (8.5) is described in the cartesian product •2 × ~_ 

by 
F x i d = ~ o P o ~  -I. 

Corollary 8.2 implies that  any invariant function under F × id depends 

almost everywhere (a.e.) only on the third coordinate. 

This proves that  any function invariant under the restriction of P to F (8.5) 

is of the form h o f ,  for some measurable function h : R+ ~ R. By (7.3), any 

function invariant under P is uniquely defined a.e. by its restriction to F: 

If x E IR 3 , then p,~(x)(x) C F. 

g o P = g implies that  g(x) = g(P~(X)(x)). 

About the ergodic decomposition of P,  one has established that: 
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THEOREM 8.3: T h e  f unc t i on  f (7.3) genera tes  the  algebra o f  invar iant  f unc t ions  

under P.  That  is, a n y  invar iant  f unc t i on  under  P is of the f o rm h o f ,  for s o m e  

func t ion  h: R+ ~ IR. 

Let g be an invariant function under T (1.5); then 

is an invariant function under P.  According to Theorem 8.3, there exists h such 

that  

g = h ( f ( x ) ) ,  for a l lx .  

By (7.3), f ( t x )  = t f ( x ) ,  for any t > 0. One obtains that  

g = h ( t f ( x ) ) ,  for any t > 0. 

It  follows that  h is constant almost everywhere. 

Theorem 2.3 has been proved. | 

9. O n  h i g h e r  d i m e n s i o n s  . . .  

Consider th~ iterates of P (1.3) at x C 1~ ,  for all k > 0, 

(9.1) : 

Let a be the permutat ion which arranges, in increasing order, the coordinates in 

(9.1) and set, for 1 < i < n, 

(k) = X(k) and y(0 k) = 0. o(~) 

LEMMA 9.1: For each 1 < i < n/ ixed,  the sequence (y}k))k>_O is decreasing. 

Proof:  For 1 < i < n, one of the following happens: 

i <- gi - Yi -1  or Yl - Yi • 

The last inequality implies that  

i <_max  y - g j  . _ _ 

This proves the lemma. | 

Lemma 9:1 allows one to define, for 0 < i < n, 

y}OO) lim - (k) -~ gi . k ~+oe 
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For every x E 1~_ and all 1 <_ i < n, 

y(~) = O. i 

Proof." Assume that there exists 1 _< j < n such that  y ~ )  > 0 and Yj-a~ (oo) = 0. It 

implies that  for/c sufficiently large 

,(k) . (~)  o(~) (9.2) yj~ (k)_l K gj" (oo) and ~j+l K Yj+I q- gj  • 

_ (oo) . (oo) There exists k sufficiently large for which (9.2) First assume that gj < Yj+I" 

holds and, besides, 

(9.3) <  j+l. 

(9.2) and (9.3) imply that 

y(k+l) { k) .(k). } o(~o) j+l max y} l < i < j + l  < y j + l  

This contradicts Lemma 9.1. 

.(~) . (oo) (8.2) gives that Therefore yj = Yj+I .  

_ ~ (~)  (9.4) max{y} k) ~ i - l . ' ( k ) ' i = l , ' " , J - l , j + l }  < y j  . 

(k+l)  (k+l)  The left-hand side of (9.4) equals yj  or Yj+a , so it contradicts Lemma 9.1. 

One concludes that - (~o) = 0, for all 1 < i < n, which proves the lemma. Yi 
| 

In the ease n = 4, Theorem 2.1 allows one to prove the following: 

Let  P be the four-dimensional  Poincar~ algorithm; then for a lmost  LEMMA 9.3: 

all x 

Set Proof." 

(9.5) 

y(4 ~ )  = O. 

Let x E A. By Lemma 9.2, y(~) = 0, and this allows one to define 3 

k (x )  = min{k: y~k) < y ~ ) } .  
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This assures the following parti t ion of A: 

k>0 

For a fixed k, set 

(9.6) 

If x E A', for all m >_ 0, 

A' = Pk{x: k(x) = k}. 

Isr. J. Math. 

(9.7) pm+lx=(U(x im)  (m), (m)_mo • ,x3  ,x4 . . . .  

where U is the three-dimensional Poincar6 algorithm. 

Theorem 2.1 assures that  for almost all (xl,  x2,x3), 

(9 .8)  Um(Xl,X2,X3) ~ ( 0 , 0 ,  r ) ,  as  m ----+ +(:x), 

where r > 0. (9.7) and (9.8) imply that  A' (9.6) is a null measure set, and one 

concludes that  A (9.5) must also be a null measure set. | 

One can add to the conjectures made in the introduction of this paper  the 

following: 

If  n is even: ~ y(k) converges for a . e . x .  
k_>0 

If n is odd: y(¢¢) > 0 for a . e . x .  
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